If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16D^2-4D+412
We move all terms to the left:
-(-16D^2-4D+412)=0
We get rid of parentheses
16D^2+4D-412=0
a = 16; b = 4; c = -412;
Δ = b2-4ac
Δ = 42-4·16·(-412)
Δ = 26384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$D_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$D_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{26384}=\sqrt{16*1649}=\sqrt{16}*\sqrt{1649}=4\sqrt{1649}$$D_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{1649}}{2*16}=\frac{-4-4\sqrt{1649}}{32} $$D_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{1649}}{2*16}=\frac{-4+4\sqrt{1649}}{32} $
| -3k+7=-17 | | 2^3m=2^-m | | -72=-8p | | −5.2=5.1y−4.6y+5.3 | | 3=15+r | | 6^2n=36 | | 2x3+48=3x2+32x | | 4x-2=122 | | -9.7+(2+4^2)=x | | 3x3+18x2=48x | | 6(2-8x)=-31 | | 2/3x-1/6=5/12-3x | | 8k −1=−3 | | 1–x=12 | | 3×-4y=-26 | | 9=-7x-5 | | 12x+8=5x+6 | | -2x+(-1/2x+1)=6 | | 7x-24+11=3x+20+ | | H(t)=-16t^2+320t+5 | | 15+8b=8(b+1) | | (x2+4)(x2+4)-11(x2+4)+24=0 | | k3-11=-5 | | 5^-2b=1/125 | | 16^-2a=64 | | -7=-6+n/12 | | 27+8r=7(-3+2r) | | (x2+3)(x2+3)2=4x2+12 | | 1/5(x-20)=44-x | | 2b+23=3(7b-5) | | (6x+7)=(11x-2)+90 | | 3x2+3x=17x−8 |